- cross-posted to:
- linux@lemmy.ml
- cross-posted to:
- linux@lemmy.ml
“Whether a proof of concept or not, Bootkitty marks an interesting move forward in the UEFI threat landscape, breaking the belief about modern UEFI bootkits being Windows-exclusive threats,” ESET researchers wrote. “Even though the current version from VirusTotal does not, at the moment, represent a real threat to the majority of Linux systems, it emphasizes the necessity of being prepared for potential future threats.”
@marcan@treehouse.systems (Hector Martin from Asahi Linux) said the following on Mastodon:
Ars headline: “Found in the wild: The world’s first unkillable UEFI bootkit for Linux”
Article then proceeds to describe a toy GRUB wrapper bootkit that has nothing to do with UEFI firmware (other than running on UEFI systems like any other UEFI bootloader), does not persist in UEFI firmware whatsoever (it just is installed in the ESP partition on disk), and can be killed by not just a drive swap, but any OS reinstall, and even simply a GRUB update/reinstall.
And which looks like a toy demo from every angle, that any experienced security researcher could have cooked up in a couple afternoons. Hardcoded kernel patch offsets for a single specific Ubuntu kernel build and all. No novel techniques in use. This could have even been a homework exercise as far as I’m concerned.
In fact, it has an obvious mistake, touched on by the original article: LD_PRELOAD is set to a string trailing with " /init", no doubt a copy+paste of the command line used to achieve the same execution during testing. The correct string would have omitted the " /init", and the mistake would have caused an error message like this to be printed for every executable launched until LD_PRELOAD is overridden:
ERROR: ld.so: object ‘/init’ from LD_PRELOAD cannot be preloaded (invalid ELF header): ignored.
Furthermore, this bootkit is incomplete, since it relies on chaining into components installed via another mechanism (e.g. /opt/injector.so in the initramfs). A true bootkit only relies on its own first stage to drop all subsequent stages. That’s the whole point of setting up a boot chain compromise like this. Otherwise you can defeat it by removing any of the stages, even if the bootkit stage is intact. As it stands, this bootkit isn’t really a bootkit, it’s just a module signing side-step that allows a traditional rootkit to be loaded on a system with Secure Boot enabled (and, since the Secure Boot is still working as intended, that results in a prompt on the first reboot asking the user to install the “bootkit”'s certificate into the UEFI trusted certificate store, since it is obviously not trusted by default). So it can’t even be installed without clear warning to the user that something is wrong.
Come on, @dangoodin. I expect better than this from Ars, and I expect a correction, because this is just inexcusable misinformation. The original article clearly mentions how to kill this “unkillable” bootkit, which tells me you didn’t even read the original article all the way.
A simple remedy tip to get rid of the bootkit is to move the legitimate /EFI/ubuntu/grubx64-real.efi file back to its original location, which is /EFI/ubuntu/grubx64.efi.
Update: article & headline have been updated.
The Bootkitty sample ESET found is unable to override a defense, known as UEFI Secure Boot, that uses cryptographic signatures to ensure that each piece of software loaded during startup is trusted by a computer’s manufacturer.
AKA not that big of a deal, yet. An article from another post about this also mentions GRUB explicitly as a requirement as well as PoC using self signed keys, which renders it sort of impossible to abuse.
UKI + your own keys + secure boot is still not broken.
Unfortunately a lot of people in the Linux world still hate secure boot because they associate it with locking your PC to only running windows. Never mind the fact that basically every big Linux distro plays nicely with secure boot these days, and has for a while now.
I associate it with the fight I’ve had every single time I tried to use it. It’s never been a smooth process on any server I attempted to use it on. Usually I either run into problems with a system not wanting to properly boot the memory stick even with a full UEFI image flashed to it, or if I do get that to work I go through the whole installation process only to find the system unbootable for whatever reason. Eventually I just give up and do a standard installation because why should I have to work this hard to put an OS on a machine?



