An AAAA cell has 200-350 mohms internal resistance. A 9v battery has 6 of them in series (many of them are literally that, others have their cells as a stack of plastic buckets). The nose ring is a short run of wire, it’s idunno a 0.2 ohm heater?
I just tested this (for science!) with a 9V battery and an iron nail of roughly nose-ring diameter. Both the nail and the battery get unpleasantly hot after several seconds. I don’t think they’d get hot enough to burn you, though. (Don’t take my word, though, please!) I believe the internal resistance of the battery does also increase with the temperature, so it effectively somewhat self regulates itself.
Common nose ring materials like Titanium and Stainless Steel are 4× and 7× more resistant than iron, which means they should dissipate more power than the nail, and thus get hotter. I was calculating something around 3 milliohms for a titanium 16 gauge 10mm wire, and 0.7 milliohms for an iron wire.
Regardless of material, at 1000 milliohms internal resistance, i think the battery itself is doing most of the heat dissipation. (But also over a much bigger surface area!)
An AAAA cell has 200-350 mohms internal resistance. A 9v battery has 6 of them in series (many of them are literally that, others have their cells as a stack of plastic buckets). The nose ring is a short run of wire, it’s idunno a 0.2 ohm heater?
I think the septum is going to get pretty toasty.
https://data.energizer.com/pdfs/e96.pdf
I just tested this (for science!) with a 9V battery and an iron nail of roughly nose-ring diameter. Both the nail and the battery get unpleasantly hot after several seconds. I don’t think they’d get hot enough to burn you, though. (Don’t take my word, though, please!) I believe the internal resistance of the battery does also increase with the temperature, so it effectively somewhat self regulates itself.
Common nose ring materials like Titanium and Stainless Steel are 4× and 7× more resistant than iron, which means they should dissipate more power than the nail, and thus get hotter. I was calculating something around 3 milliohms for a titanium 16 gauge 10mm wire, and 0.7 milliohms for an iron wire.
Regardless of material, at 1000 milliohms internal resistance, i think the battery itself is doing most of the heat dissipation. (But also over a much bigger surface area!)
/c/theydidthescience
Thank you for your service
Well now I want to try this with my septum piercing and find out
Do it with the piercing OUT OF YOUR BODY. You don’t want a hot piece of metal that you can’t get off of yourself fast enough.
You could put one in a hot dog and shock it if you want to try it without making your nose toasty
If you do please let me know what happens lol.