Summary

France’s Flamanville 3 nuclear reactor, its most powerful at 1,600 MW, was connected to the grid on December 21 after 17 years of construction plagued by delays and budget overruns.

The European Pressurized Reactor (EPR), designed to boost nuclear energy post-Chernobyl, is 12 years behind schedule and cost €13.2 billion, quadruple initial estimates.

President Macron hailed the launch as a key step for low-carbon energy and energy security.

Nuclear power, which supplies 60% of France’s electricity, is central to Macron’s plan for a “nuclear renaissance.”

  • TheBlackLounge@lemm.ee
    link
    fedilink
    English
    arrow-up
    4
    arrow-down
    18
    ·
    14 hours ago

    Solar is not sustainable. Maybe one day but today’s panels will all have to be replaced in a few decades. For now it’s a way to bridge the needed to go fully nuclear.

    • Resonosity@lemmy.dbzer0.com
      link
      fedilink
      English
      arrow-up
      2
      ·
      4 hours ago

      Just because those panels will need to be replaced in decades time doesn’t mean they won’t have value then.

      NREL estimates that PV 80-95% of modules’ materials can be recovered through recycling, and there is constant academic work on refining the EoL process to better delaminate panels so they can be better sorted and their materials better reused.

      I can’t find the figure, but I believe the IPCC found in their 6th Assessment Report that the cost to deploy renewables + battery storage, and manage the grid more intelligently on the backend, absolutely demonstrate lower costs than it takes to build new nuclear. I want to say that that finding still out value on our existing nuclear fleet, so we definitely don’t want to shut any existing plants down if we don’t have to.

      I don’t think fission nuclear will get our energy systems off of fossil fuels. Fusion nuclear has the potential to do this, but by the time that technology reaches commercial operation, renewables alone will likely be in the multiples of TW of generation capacity.

      Nuclear should be part of the future if modularity and MSRs/thorium reactors can breakthrough. Until then, solar/wind + storage baby

    • mosiacmango@lemm.ee
      link
      fedilink
      English
      arrow-up
      20
      arrow-down
      1
      ·
      edit-2
      7 hours ago

      You realize nuclear power plants have steady maintenance and replacements occurring at all times, right? That a machine being used in nuclear power doesn’t make it immune from breaking down? That many of the machines involved have spinning and moving parts working in a high heat environment, whereas PV systems are largely static?

      Replacement in a nuclear plant is happening way, way more often than on PV panels, where commodity panels are rated to provide near full power for 25-35 years, and then still provide over 80% power while they very slowly drop off. Solar is the only power source that will continue providing power without constant maintenance.

      If “lack of replacement” is your main criteria, you dun fucked up backing nuclear. Solar fits that bill way, way better.

      • TheBlackLounge@lemm.ee
        link
        fedilink
        English
        arrow-up
        3
        arrow-down
        2
        ·
        edit-2
        7 hours ago

        Of course a nuclear reactor needs maintenance and thus also produces infrastructure waste. A lot more than a solar cell. But it dwarfs when you divide by watt-hours. Solar cells produce dozens of times more waste per watt-hour, and stuff that’s worse to handle too. Nuclear plants are mostly concrete and steel. Solar panels are glass and rare elements that we can’t recycle properly yet.

        Like, you didn’t really think I was just comparing plants to cells did you? The point is, if the whole world goes solar, how many times over can we replace all of it?

        • mosiacmango@lemm.ee
          link
          fedilink
          English
          arrow-up
          3
          ·
          edit-2
          6 hours ago

          Nuclear plants are mostly concrete and steel.

          ???

          You realize the above is true for basically any building, right? That that’s a crazy metric to judge any maintenance effort by? Total weight of the building and then everything in it?

          Do datacenters not have replaceable parts because they are mainly concrete and steel? Sure, they may have 10,000 servers that all need to be fixed and replaced constantly but since a datacenter is mostly concrete and steel, it doesn’t matter because it’s not much by total mass of the datacenter? Same goes for airports, factories, on and on.

          I guess if you plonk thousands of maintenance heavy devices into a large enough building then weigh the whole structure, the percentage of the structure that has to be serviced goes down, making overall (by weight) maintenance go down. Airplanes need to be fixed? They weigh basically nothing compared to airports, so “tada!” no they dont!

          Skipping over your bizarre metric, solar cell recycling is hitting 95%. That is again, something that isn’t relevant with modern panels for 30-50+ years, as they will still be producing 70-80% of their rated power at that time. That’s easily enough power to just leave them in use.